G-SYNC 101: Control Panel


G-SYNC Module

The G-SYNC module is a small chip that replaces the display’s standard internal scaler, and contains enough onboard memory to hold and process a single frame at a time.

The module exploits the vertical blanking interval (the span between the previous and next frame scan) to manipulate the display’s internal timings; performing G2G (gray to gray) overdrive calculations to prevent ghosting, and synchronizing the display’s refresh rate to the GPU’s render rate to eliminate tearing, along with the delayed frame delivery and adjoining stutter caused by traditional syncing methods.

G-SYNC Demo

The below Blur Busters Test UFO motion test pattern uses motion interpolation techniques to simulate the seamless framerate transitions G-SYNC provides within the refresh rate, when directly compared to standalone V-SYNC.

G-SYNC Activation

“Enable for full screen mode” (exclusive fullscreen functionality only) will automatically engage when a supported display is connected to the GPU. If G-SYNC behavior is suspect or non-functioning, untick the “Enable G-SYNC, G-SYNC Compatible” box, apply, re-tick, and apply.

Blur Buster's G-SYNC 101: Control Panel

G-SYNC Windowed Mode

“Enable for windowed and full screen mode” allows G-SYNC support for windowed and borderless windowed mode. This option was introduced in a 2015 driver update, and by manipulating the DWM (Desktop Windows Manager) framebuffer, enables G-SYNC’s VRR (variable refresh rate) to synchronize to the focused window’s render rate; unfocused windows remain at the desktop’s fixed refresh rate until focused on.

G-SYNC only functions on one window at a time, and thus any unfocused window that contains moving content will appear to stutter or slow down, a reason why a variety of non-gaming applications (popular web browsers among them) include predefined Nvidia profiles that disable G-SYNC support.

Note: this setting may require a game or system restart after application; the “G-SYNC Indicator” (Nvidia Control Panel > Display > G-SYNC Indicator) can be enabled to verify it is working as intended.

G-SYNC Preferred Refresh Rate

“Highest available” automatically engages when G-SYNC is enabled, and overrides the in-game refresh rate selector (if present), defaulting to the highest supported refresh rate of the display. This is useful for games that don’t include a selector, and ensures the display’s native refresh rate is utilized.

“Application-controlled” adheres to the desktop’s current refresh rate, or defers control to games that contain a refresh rate selector.

Note: this setting only applies to games being run in exclusive fullscreen mode. For games being run in borderless or windowed mode, the desktop dictates the refresh rate.

G-SYNC & V-SYNC

G-SYNC (GPU Synchronization) works on the same principle as double buffer V-SYNC; buffer A begins to render frame A, and upon completion, scans it to the display. Meanwhile, as buffer A finishes scanning its first frame, buffer B begins to render frame B, and upon completion, scans it to the display, repeat.

The primary difference between G-SYNC and V-SYNC is the method in which rendered frames are synchronized. With V-SYNC, the GPU’s render rate is synchronized to the fixed refresh rate of the display. With G-SYNC, the display’s VRR (variable refresh rate) is synchronized to the GPU’s render rate.

Upon its release, G-SYNC’s ability to fall back on fixed refresh rate V-SYNC behavior when exceeding the maximum refresh rate of the display was built-in and non-optional. A 2015 driver update later exposed the option.

This update led to recurring confusion, creating a misconception that G-SYNC and V-SYNC are entirely separate options. However, with G-SYNC enabled, the “Vertical sync” option in the control panel no longer acts as V-SYNC, and actually dictates whether, one, the G-SYNC module compensates for frametime variances output by the system (which prevents tearing at all times. G-SYNC + V-SYNC “Off” disables this behavior; see G-SYNC 101: Range), and two, whether G-SYNC falls back on fixed refresh rate V-SYNC behavior; if V-SYNC is “On,” G-SYNC will revert to V-SYNC behavior above its range, if V-SYNC is “Off,” G-SYNC will disable above its range, and tearing will begin display wide.

Within its range, G-SYNC is the only syncing method active, no matter the V-SYNC “On” or “Off” setting.

Currently, when G-SYNC is enabled, the control panel’s “Vertical sync” entry is automatically engaged to “Use the 3D application setting,” which defers V-SYNC fallback behavior and frametime compensation control to the in-game V-SYNC option. This can be manually overridden by changing the “Vertical sync” entry in the control panel to “Off,” “On,” or “Fast.”



3072 Comments For “G-SYNC 101”

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Sort by:   newest | oldest | most liked
HopelessNinersFan
Member
HopelessNinersFan

Hi!

Thank you for the guide, it’s definitely made life much easier for me. I do have some confusion though. I have a 4080 SUPER, 32 GB RAM, i9 13980HX, and 240 HZ display – I’m quite proud of it. It mentions to enable Reflex if available or Low-Latency mode if FPS doesn’t always exceed the refresh rate, but how does that fit with setting a FPS limiter to limit the FPS regardless? I apologize in-advance if I’m misinterpreting, I’m still relatively new to PC gaming on a more advanced level. Furthermore, is Reflex even worth it if my 4080 isn’t ever anywhere near getting pinned? I heard Reflex only has an impact if your GPU is at 99%. Thanks again!

Regards,

Herconomicon
Member
Herconomicon

Do you recommend v-sync set to ON globally or per application ?

Vizima
Member
Vizima

So, I’ve been doing a lot of testing over the past few weeks. My PC specs are: Intel Core i7-13700k and my monitor is an Asus 240Hz OLED. First off, I want to thank you for the guide, it started my hyperfocus of testing a lot stuff xD. I stumbled upon something peculiar while playing Apex Legends.

When I cap my framerate (I use RTSS for this) and enable both G-Sync and V-Sync in the NVIDIA Control Panel, and then select Reflex in-game, my framerate gets capped at 225, as the guide suggests. It feels incredibly smooth, but I noticed something strange – I could NOT bunny hop anymore (on controller). Turning off V-Sync allows me to bunny hop again, but I dislike the drop in smoothness, so I decided to try some other options.

The first thing I tried was disabling Reflex altogether. Despite expecting Reflex to reduce input delay, its absence actually allowed me to bunny hop again (which I consider an indicator of low input delay). Then, I decided to re-enable everything – G-Sync, V-Sync in NCP, and Reflex in-game – and capped my framerate in RTSS to 200. To my surprise, I found that I could bunny hop once again, experiencing low input delay and maintaining very smooth gameplay. Can anyone explain what’s happening here? Because with the exact same settings at 225, I couldn’t achieve the same result.

Here are my MSI Afterburner benchmark results while playing in-game:

200 FPS (capped in RTSS)
Average FPS: 198
1% Low FPS: 185
0.1% Low FPS: 166

Thanks a lot!

toby23
Member
toby23

If I have a 120 Hz monitor with G-Sync and can achieve 115fps average in a game, is there any negative to locking the framerate to 59fps with RTSS to lower power consumption and smooth out Frametime?
Running unlocked in MSFS results in the Frametime jumping around all over the place but locking to 59 fps makes it steady.

PS Super article, thank you so much for keeping it updated.

Ryan Le
Member
Ryan Le

In Sea of Thieves, I have V-Sync turned off, but there is also an option to set the buffering to either double or triple, and there’s no off option. I set it to double buffering, but do I still need to enable V-Sync in NVCP? Would the in-game double buffering option (with in-game V-Sync off) conflict with NVCP V-Sync since it’s also running on double buffering?

wpDiscuz