G-SYNC 101: In-game vs. External FPS Limiters

Closer to the Source

Up until this point, an in-game framerate limiter has been used exclusively to test FPS-limited scenarios. However, in-game framerate limiters aren’t available in every game, and while they aren’t required for games where the framerate can’t meet or exceed the maximum refresh rate, if the system can sustain the framerate above the refresh rate, and a said option isn’t present, an external framerate limiter must be used to prevent V-SYNC-level input lag instead.

In-game framerate limiters, being at the game’s engine-level, are almost always free of additional latency, as they can regulate frames at the source. External framerate limiters, on the other hand, must intercept frames further down the rendering chain, which can result in delayed frame delivery and additional input latency; how much depends on the limiter and its implementation.

RTSS is a CPU-level FPS limiter, which is the closest an external method can get to the engine-level of an in-game limiter. In my initial input lag tests on my original thread, RTSS appeared to introduce no additional delay when used with G-SYNC. However, it was later discovered disabling CS:GO’s “Multicore Rendering” setting, which runs the game on a single CPU-core, caused the discrepancy, and once enabled, RTSS introduced the expected 1 frame of delay.

Seeing as the CS:GO still uses DX9, and is a native single-core performer, I opted to test the more modern “Overwatch” this time around, which uses DX11, and features native multi-threaded/multi-core support. Will RTSS behave the same way in a native multi-core game?

Yes, RTSS still introduces up to 1 frame of delay, regardless of the syncing method, or lack thereof, used. To prove that a -2 FPS limit was enough to avoid the G-SYNC ceiling, a -10 FPS limit was tested with no improvement. The V-SYNC scenario also shows RTSS delay stacks with other types of delay, retaining the FPS-limited V-SYNC’s 1/2 to 1 frame of accumulative delay.

Next up is Nvidia’s FPS limiter, which can be accessed via the third-party “Nvidia Inspector.” Unlike RTSS, it is a driver-level limiter, one further step removed from engine-level. My original tests showed the Nvidia limiter introduced 2 frames of delay across V-SYNC OFF, V-SYNC, and G-SYNC scenarios.

Yet again, the results for V-SYNC and V-SYNC OFF (“Use the 3D application setting” + in-game V-SYNC disabled) show standard, out-of-the-box usage of both Nvidia’s v1 and v2 FPS limiter introduce the expected 2 frames of delay. The limiter’s impact on G-SYNC appears to be particularly unforgiving, with a 2 to 3 1/2 frame delay due to an increase in maximums at -2 FPS compared to -10 FPS, meaning -2 FPS with this limiter may not be enough to keep it below the G-SYNC ceiling at all times, and it might be worsened by the Nvidia limiter’s own frame pacing behavior’s effect on G-SYNC functionality.

Needless to say, even if an in-game framerate limiter isn’t available, RTSS only introduces up to 1 frame of delay, which is still preferable to the 2+ frame delay added by Nvidia’s limiter with G-SYNC enabled, and a far superior alternative to the 2-6 frame delay added by uncapped G-SYNC.

172 Comments For “G-SYNC 101”

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Sort by:   newest | oldest | most liked

Very helpful


To confirm, G-SYNC ON + v-sync ON is better than G-SYNC OFF + v-sync ON? My ultimate goal is to eliminate tearing while not introducing input lag, so it seems like the former is the way to go.


Thank you for those detailed explanations. My question is why would we enable v-sync if it would never reach the refresh rate cap with the rtss. And also, if for example, I am consistently running the game at a higher refresh rate than my monitor (which is 120hz), what is the point of rtss if it would limit my fps to 2-3 frames below the refresh rate? Shouldn’t I just enable G-sync without a limit which as you said has less input lag than v-sync even when the fps goes over the refresh rate. Which brings to the question of why do we need v-sync at all?


I have the Viewsonic VX2458-C-mhd which is a Freesync monitor. Since my GPU is GTX 1080 i could enable G-sync with the latest drivers. But the problem is that i have brightness flickering (which i read that is a quite frequent occurrence to all adaptive sync technologies). Since i tried to fix it but nothing worked i disabled Freesync/G-sync. So the question is, now that G-sync is off, should i just enable V-sync (NCP) + framelimit for better visual quality and prevent tearing or leave V-sync (NCP) off but still use framelimit?


Hi, thanks for the excellent guide

I want to play games that are capped to 60 ish fps by their game engine, should i enable vsync? (assassin’s creed) I ofc want to enable gsync