G-SYNC 101: In-game vs. External FPS Limiters


Closer to the Source

Up until this point, an in-game framerate limiter has been used exclusively to test FPS-limited scenarios. However, in-game framerate limiters aren’t available in every game, and while they aren’t required for games where the framerate can’t meet or exceed the maximum refresh rate, if the system can sustain the framerate above the refresh rate, and a said option isn’t present, an external framerate limiter must be used to prevent V-SYNC-level input lag instead.

In-game framerate limiters, being at the game’s engine-level, are almost always free of additional latency, as they can regulate frames at the source. External framerate limiters, on the other hand, must intercept frames further down the rendering chain, which can result in delayed frame delivery and additional input latency; how much depends on the limiter and its implementation.

RTSS is a CPU-level FPS limiter, which is the closest an external method can get to the engine-level of an in-game limiter. In my initial input lag tests on my original thread, RTSS appeared to introduce no additional delay when used with G-SYNC. However, it was later discovered disabling CS:GO’s “Multicore Rendering” setting, which runs the game on a single CPU-core, caused the discrepancy, and once enabled, RTSS introduced the expected 1 frame of delay.

Seeing as the CS:GO still uses DX9, and is a native single-core performer, I opted to test the more modern “Overwatch” this time around, which uses DX11, and features native multi-threaded/multi-core support. Will RTSS behave the same way in a native multi-core game?

Blur Buster's G-SYNC 101: Input Latency & Optimal Settings
Blur Buster's G-SYNC 101: Input Latency & Optimal Settings
Blur Buster's G-SYNC 101: Input Latency & Optimal Settings

Yes, RTSS still introduces up to 1 frame of delay, regardless of the syncing method, or lack thereof, used. To prove that a -2 FPS limit was enough to avoid the G-SYNC ceiling, a -10 FPS limit was tested with no improvement. The V-SYNC scenario also shows RTSS delay stacks with other types of delay, retaining the FPS-limited V-SYNC’s 1/2 to 1 frame of accumulative delay.

Next up is Nvidia’s FPS limiter, which can be accessed via the third-party “Nvidia Inspector.” Unlike RTSS, it is a driver-level limiter, one further step removed from engine-level. My original tests showed the Nvidia limiter introduced 2 frames of delay across V-SYNC OFF, V-SYNC, and G-SYNC scenarios.

Blur Buster's G-SYNC 101: Input Latency & Optimal Settings
Blur Buster's G-SYNC 101: Input Latency & Optimal Settings
Blur Buster's G-SYNC 101: Input Latency & Optimal Settings

Yet again, the results for V-SYNC and V-SYNC OFF (“Use the 3D application setting” + in-game V-SYNC disabled) show standard, out-of-the-box usage of both Nvidia’s v1 and v2 FPS limiter introduce the expected 2 frames of delay. The limiter’s impact on G-SYNC appears to be particularly unforgiving, with a 2 to 3 1/2 frame delay due to an increase in maximums at -2 FPS compared to -10 FPS, meaning -2 FPS with this limiter may not be enough to keep it below the G-SYNC ceiling at all times, and it might be worsened by the Nvidia limiter’s own frame pacing behavior’s effect on G-SYNC functionality.

Needless to say, even if an in-game framerate limiter isn’t available, RTSS only introduces up to 1 frame of delay, which is still preferable to the 2+ frame delay added by Nvidia’s limiter with G-SYNC enabled, and a far superior alternative to the 2-6 frame delay added by uncapped G-SYNC.



46 Comments For “G-SYNC 101”

Sort by:   newest | oldest | most liked
pervyjutsu
Member
pervyjutsu

Should “Reduce Buffering” option in Overwatch be enabled or disabled? Many competitive/pro players suggest having reduce buffering on to get higher framerate and reduced input lag but would having this option on have a negative effect on G-SYNC?

Also I recently upgraded my system to a i7-8700k and 1080ti. I usually sit at a steady 300fps on Overwatch now and use a 240hz monitor (Asus PG258Q). Would G-SYNC be worth using in this case?

vityapapa
Member
vityapapa

The Csgo input-lagg is the best g-sync off+v-sync off and fps_max 0?
i have 144hz monitor.

bcbuse
Member
bcbuse

First, this is the best Gsync/Vsync information on the internet. I appreciate the effort you put into this, well done.

I read a comment you posted somewhere that ‘technically’ the absolute least input lag would be with Gsync Off + Vsync Off + Framerate upcapped(getting at least 2x the monitor refresh rate). Can you approximate how much less input lag that would be versus Gsync On + Vsync On(NVCP) + Framerate capped 2 below monitor refresh rate?

vityapapa
Member
vityapapa

Hi,
on the 9th pages of the CSGo test, V-sync off+288fps limit
the G-sync was turn on or turn off?
thnx

Epicbeardman
Member
Epicbeardman
Thanks for this excellent guide. I now know that the most optimal configuration for my 60hz G-Sync monitor is G-Sync ON + V-Sync ON (NVCP) + V-Sync OFF (in-game) + 57 FPS limit. However, there are some games which utilize V-Sync but don’t provide an option to disable it, either in-game or via an external config file. As stated in section 14 of the guide: “…some in-game V-SYNC solutions may introduce their own frame buffer or frame pacing behaviors, enable triple buffer V-SYNC automatically (not optimal for the native double buffer of G-SYNC)…” In this scenario, should I still use… Read more »
wpDiscuz