G-SYNC 101: G-SYNC vs. Fast Sync


The Limits of Single Frame Delivery

Okay, so what about Fast Sync? Unlike G-SYNC, it works with any display, and while it’s still a fixed refresh rate syncing solution, its third buffer allows the framerate to exceed the refresh rate, and it utilizes the excess frames to deliver them to the display as fast as possible. This avoids double buffer behavior both above and below the refresh rate, and eliminates the majority of V-SYNC input latency.

Sounds ideal, but how does it compare to G-SYNC?

Blur Buster's G-SYNC 101: Input Latency & Optimal Settings
Blur Buster's G-SYNC 101: Input Latency & Optimal Settings
Blur Buster's G-SYNC 101: Input Latency & Optimal Settings
Blur Buster's G-SYNC 101: Input Latency & Optimal Settings
Blur Buster's G-SYNC 101: Input Latency & Optimal Settings
Blur Buster's G-SYNC 101: Input Latency & Optimal Settings

Evident by the results, Fast Sync only begins to reduce input lag over FPS-limited double buffer V-SYNC when the framerate far exceeds the display’s refresh rate. Like G-SYNC and V-SYNC, it is limited to completing a single frame scan per scanout to prevent tearing, and as the 60Hz scenarios show, 300 FPS Fast Sync at 60Hz (5x ratio) is as low latency as G-SYNC is with a 58 FPS limit at 60Hz.

However, the less excess frames are available for the third buffer to sample from, the more the latency levels of Fast Sync begin to resemble double buffer V-SYNC with an FPS Limit. And if the third buffer is completely starved, as evident in the Fast Sync + FPS limit scenarios, it effectively reverts to FPS-limited V-SYNC latency, with an additional 1/2 to 1 frame of delay.

Unlike double buffer V-SYNC, however, Fast Sync won’t lock the framerate to half the maximum refresh rate if it falls below it, but like double buffer V-SYNC, Fast Sync will periodically repeat frames if the FPS is limited below the refresh rate, causing stutter. As such, an FPS limit below the refresh rate should be avoided when possible, and Fast Sync is best used when the framerate can exceed the refresh rate by at least 2x, 3x, or ideally, 5x times.

So, what about pairing Fast Sync with G-SYNC? Even Nvidia suggests it can be done, but doesn’t go so far as to recommend it. But while it can be paired, it shouldn’t be…

Say the system can maintain an average framerate just above the maximum refresh rate, and instead of an FPS limit being applied to avoid V-SYNC-level input lag, Fast Sync is enabled on top of G-SYNC. In this scenario, G-SYNC is disabled 99% of the time, and Fast Sync, with very few excess frames to work with, not only has more input lag than G-SYNC would at a lower framerate, but it can also introduce uneven frame pacing (due to dropped frames), causing recurring microstutter. Further, even if the framerate could be sustained 5x above the refresh rate, Fast Sync would (at best) only match G-SYNC latency levels, and the uneven frame pacing (while reduced) would still occur.

That’s not to say there aren’t any benefits to Fast Sync over V-SYNC on a standard display (60Hz at 300 FPS, for instance), but pairing Fast Sync with uncapped G-SYNC is effectively a waste of a G-SYNC monitor, and an appropriate FPS limit should always be opted for instead.

Which poses the next question: if uncapped G-SYNC shouldn’t be used with Fast Sync, is there any benefit to using G-SYNC + Fast Sync + FPS limit over G-SYNC + V-SYNC (NVCP) + FPS limit?

Blur Buster's G-SYNC 101: Input Lag & Optimal Settings

The answer is no. In fact, unlike G-SYNC + V-SYNC, Fast Sync remains active near the maximum refresh rate, even inside the G-SYNC range, reserving more frames for itself the higher the native refresh rate is. At 60Hz, it limits the framerate to 59, at 100Hz: 97 FPS, 120Hz: 116 FPS, 144Hz: 138 FPS, 200Hz: 189 FPS, and 240Hz: 224 FPS. This effectively means with G-SYNC + Fast Sync, Fast Sync remains active until it is limited at or below the aforementioned framerates, otherwise, it introduces up to a frame of delay, and causes recurring microstutter. And while G-SYNC + Fast Sync does appear to behave identically to G-SYNC + V-SYNC inside the Minimum Refresh Range (<36 FPS), it’s safe to say that, under regular usage, G-SYNC should not be paired with Fast Sync.



3006 Comments For “G-SYNC 101”

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Sort by:   newest | oldest | most liked
dandyjr
Member
dandyjr

Hey Jorimt, I have a question regarding the issue of avoiding the G-Sync ceiling.

I recently purchased a 280Hz Freesync monitor (it’s not official G-Sync Compatible but after testing in multiple games, it seems to mirror my 144Hz officially G-Sync Compatible monitor in accuracy) and I’ve noticed an issue that has happened on previous monitors I’ve owned as well.

This monitor doesn’t have an OSD that I can have toggled on at all times so I had to manually open the menu to check each time but I’ve noticed that there are multiple moments where the refresh rate will read as 280Hz instead of whatever framerate the game is reading as at the time.

For example, I tried with in-game and external limiters, I can cap the frames at 240fps and the game will read as 240fps but when I open the menu of the monitor, it reads as 280Hz for that moment (causing me to believe that G-Sync has disabled in that moment and Vsync has toggled on). Then I’ll close the menu and reopen it and then the refresh rate will read as some variation under the 280Hz ceiling. That lets me know that G-Sync does engage, but there are moments where it’s not engaging even when it should.

I tested this in multiple games with multiple forms of framerate caps and noticed the same trend. The closer I capped to 280Hz, the more times I would see 280Hz in the monitor. The only way to stop it from happening was to cap the framerate far below the ceiling. Capping at 277fps, for example, in RTSS caused the 280Hz readout to never change at all (which would indicate that G-Sync was not engaging) which caused me a lot of frustration.

I would think that it’s possibly due to the monitor not being offically G-Sync Compatible but the same issue would happen with my 144Hz monitor as well (with lower framerates of course because the ceiling is lower) and that monitor had an OSD that I could leave toggled on. I would see the numbers rapidly change and by watching very closely, you could see the 144Hz flash multiple times within the mixture.

Am I overthinking this or are the monitors actually reading correctly and G-Sync is disengaging and re-engaging constantly even with framerate caps below the ceiling?

It’s sad to think that the 280Hz ceiling is useless because framerates need to be capped far below the ceiling even with external limiters that appear to be perfect in execution.

TkoSeven
Member
TkoSeven

Thanks for the wonderful article.

2 questions!

Adjust desktop size and position section,
“Perform scaling on: Display or GPU” (also override the scaling mode set by games and programs)
does it matter in terms of how g-sync monitor
interacts with GPU?

2nd question on “Max frame rate” on Nvidia settings,
if a game was designed to be locked at 60fps, like Tekken 8,
Nvidia panel set to 58 fps, does it work by limiting frame data transferred to display even though
the logic of the game (application) actually went through generating data for 60 frames?
or
does it actually limit the game to only generate 58 frames?

thank you in advance.

eeayree
Member
eeayree

Hi jorimt. I myself am from another country and therefore I hope that the translator will do his job correctly. Now I’m playing Metro 2033 and this game can produce from 80 to 120 fps on my system and at the same time the GPU is not working at full capacity. It works within 85 percent. Your tuning guide states that it is best to enable low latency mode in cases where the frame rate does not always reach or exceed the refresh rate. Am I doing the right thing if I leave low latency mode on if the video card is not loading at 99%? And at what percentage values ​​does the delay appear exclusively at 99%? On 95, 96, 97 will everything work with minimal delays?

SovonHalder
Member
SovonHalder

HI jorimt, I can’t thank you enough for writing this article. I read pages 1 through 15 multiple times to understand as much as I cound and i’t’s incredibly useful for folks like me who are new to PC gaming. Just wanted to acknowledge that adn say many thanks brother.

So I set up things for my 144hz 32GR93U exactly as you described: In nvcp Gsync+Vsync+Low latency ultra and the in game Vsync, double or triple buffering off and fullscreen on. I have 2 questions basically.

1. In most games I’ve tried so far like alan wake 2, god of war, stray the fps is capped automatically to 138 as it should but in red dead online (vulkan) it maxes out at 144. I use rtss to set it custom 138 but the question remains. Why doesn’t it happen automatically?

2. The new nvidia app reports an Average PC Latency in their overlay. For me above 60ms with mouse and controller feels sluggish whereas when it’s below 30ms the game feels much more responsive. I want to implement that on my RTSS stat overlay. (I find rtss overlay more robust and feature rich and I can see frametime grap and nvidia overlay is finicky and slow.) Could you share some insight as to how they are calculating that number?

Ezi
Member
Ezi

I have a question, so i did the settings you suggested and my gpu usage went from 99% usage to hovering around 70-88ish. Is this normal? Cause if i were to default everything back, the usage would go back to 99%

these are the settings i have in NCP:
– vsync on in NCP, off ingame
– set fps limiter -3
– gsync enabled – full screen
– LLM set to ultra since ingame doesnt have a limiter

my pc spec is:
– 4080 super FE
– 7800x3D
– M32U 4k 144hz monitor

wpDiscuz