G-SYNC 101: G-SYNC Ceiling vs. FPS Limit

How Low Should You Go?

Blur Busters was the world’s first site to test G-SYNC in Preview of NVIDIA G-SYNC, Part #1 (Fluidity) using an ASUS VG248QE pre-installed with a G-SYNC upgrade kit. At the time, the consensus was limiting the fps from 135 to 138 at 144Hz was enough to avoid V-SYNC-level input lag.

However, much has changed since the first G-SYNC upgrade kit was released; the Minimum Refresh Range wasn’t in place, the V-SYNC toggle had yet to be exposed, G-SYNC did not support borderless or windowed mode, and there was even a small performance penalty on the Kepler architecture at the time (Maxwell and later corrected this).

My own testing in my Blur Busters Forum thread found that just 2 FPS below the refresh rate was enough to avoid the G-SYNC ceiling. However, now armed with improved testing methods and equipment, is this still the case, and does the required FPS limit change depending on the refresh rate?

As the results show, just 2 FPS below the refresh rate is indeed still enough to avoid the G-SYNC ceiling and prevent V-SYNC-level input lag, and this number does not change, regardless of the maximum refresh rate in use.

To leave no stone unturned, an “at” FPS, -1 FPS, -2 FPS, and finally -10 FPS limit was tested to prove that even far below -2 FPS, no real improvements can be had. In fact, limiting the FPS lower than needed can actually slightly increase input lag, especially at lower refresh rates, since frametimes quickly become higher, and thus frame delivery becomes slower due to the decrease in sustained framerates.

As for the “perfect” number, going by the results, and taking into consideration variances in accuracy from FPS limiter to FPS limiter, along with differences in performance from system to system, a -3 FPS limit is the safest bet, and is my new recommendation. A lower FPS limit, at least for the purpose of avoiding the G-SYNC ceiling, will simply rob frames.

172 Comments For “G-SYNC 101”

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Sort by:   newest | oldest | most liked

Very helpful


To confirm, G-SYNC ON + v-sync ON is better than G-SYNC OFF + v-sync ON? My ultimate goal is to eliminate tearing while not introducing input lag, so it seems like the former is the way to go.


Thank you for those detailed explanations. My question is why would we enable v-sync if it would never reach the refresh rate cap with the rtss. And also, if for example, I am consistently running the game at a higher refresh rate than my monitor (which is 120hz), what is the point of rtss if it would limit my fps to 2-3 frames below the refresh rate? Shouldn’t I just enable G-sync without a limit which as you said has less input lag than v-sync even when the fps goes over the refresh rate. Which brings to the question of why do we need v-sync at all?


I have the Viewsonic VX2458-C-mhd which is a Freesync monitor. Since my GPU is GTX 1080 i could enable G-sync with the latest drivers. But the problem is that i have brightness flickering (which i read that is a quite frequent occurrence to all adaptive sync technologies). Since i tried to fix it but nothing worked i disabled Freesync/G-sync. So the question is, now that G-sync is off, should i just enable V-sync (NCP) + framelimit for better visual quality and prevent tearing or leave V-sync (NCP) off but still use framelimit?


Hi, thanks for the excellent guide

I want to play games that are capped to 60 ish fps by their game engine, should i enable vsync? (assassin’s creed) I ofc want to enable gsync