G-SYNC 101: Optimal G-SYNC Settings & Conclusion


Optimal G-SYNC Settings*

*Settings tested with a single G-SYNC display (w/hardware module) on a single desktop GPU system; specific DSR, SLI, and multi-monitor behaviors, as well as G-SYNC laptop display and “G-SYNC Compatible” display implementation, may vary.

Nvidia Control Panel Settings:

  • Set up G-SYNC > Enable G-SYNC, G-SYNC Compatible > Enable for full screen mode.
  • Manage 3D settings > Vertical sync > On (Why?).

In-game Settings:

  • Use “Fullscreen” or “Exclusive Fullscreen” mode (some games do not offer this option, or label borderless windowed as fullscreen).
  • Disable all available “Vertical Sync,” “V-SYNC,” “Double Buffer,” and “Triple Buffer” options.
  • If an in-game or config file FPS limiter is available, and framerate exceeds refresh rate:
    Set (a minimum of) 3 FPS limit below display’s maximum refresh rate (57 FPS @60Hz, 97 FPS @100Hz, 117 FPS @120Hz, 141 FPS @144Hz, etc).

RTSS Settings:

  • If an in-game or config file FPS limiter is not available and framerate exceeds refresh rate:
    Set (a minimum of) 3 FPS limit below display’s maximum refresh rate (see G-SYNC 101: External FPS Limiters HOWTO).

OR

Nvidia “Max Frame Rate” Settings*:

*Introduced in Nvidia driver version 441.87

  • If an in-game or config file FPS limiter is not available and framerate exceeds refresh rate:
    Set “Max Frame Rate” to “On,” and adjust slider to (a minimum of) 3 FPS limit below display’s maximum refresh rate.

Reflex* Settings:

*This setting is considered Low Latency Mode’s replacement, and will override it, regardless of what LLM is set to in the NVCP.

  • If framerate does not always reach or exceed refresh rate, and Reflex is available:
    Set Reflex to “On” or “On + Boost” (“Boost” ensures the GPU doesn’t drop below its base boost clocks, similar to NVCP “Prefer maximum performance”). When combined with G-SYNC + NVCP V-SYNC, this engine-level limiter will 1) automatically limit the framerate to ~59 FPS @60Hz, ~97 FPS @100Hz, ~116 FPS @120Hz, ~138 FPS @144Hz, ~224 FPS @240Hz (etc) whenever the framerate can be sustained above the refesh rate, and 2) dynamically monitor and limit the framerate whenever it can’t be sustained above the refresh rate to prevent the extra pre-rendered frames that would be generated in an otherwise GPU-bound scenario.

Low Latency Mode* Settings:

*This setting is not currently supported in Vulkan (DX12 support was added in driver version 551.23)

  • If an FPS limiter (such as in-game, config file, RTSS, and/or Nvidia “Max Frame Rate”) is not desired or available, Reflex is not available, and framerate exceeds refresh rate:
    Set “Low Latency Mode” to “Ultra” in the Nvidia Control Panel. When combined with G-SYNC + NVCP V-SYNC, this setting will automatically limit the framerate (in supported games) to ~59 FPS @60Hz, ~97 FPS @100Hz, ~116 FPS @120Hz, ~138 FPS @144Hz, ~224 FPS @240Hz, etc.
  • If an FPS limiter is already in use (such as in-game, config file, RTSS, and/or Nvidia “Max Frame Rate”), Reflex is not available, and framerate does not always reach or exceed refresh rate:
    Set “Low Latency Mode” to “On.” Unlike “Ultra,” this will not automatically limit the framerate, but like “Ultra,” “On” (in supported games that do not already have an internal pre-rendered frames queue of “1”) will reduce the pre-rendered frames generated in GPU-bound situations where the framerate falls below the set FPS limit.

Windows “Power Options” Settings:

Windows-managed core parking can put CPU cores to sleep too often, which may increase frametime variances and spikes. For a quick fix, use the “High performance” power plan, which disables OS-managed core parking and CPU frequency scaling. If a “Balanced” power plan is needed for a system implementing adaptive core frequency and voltage settings, then a free program called ParkControl by Bitsum can be used to disable core parking, while leaving all other power saving and scaling settings intact.

Blur Buster's G-SYNC 101: Input Lag & Optimal Settings

Mouse Settings:

If available, set the mouse’s polling rate to 1000Hz, which is the setting recommended by Nvidia for high refresh rate G-SYNC, and will decrease the mouse-induced input lag and microstutter experienced with the lower 500Hz and 125Hz settings at higher refresh rates.

mouse-125vs500vs1000

Refer to The Blur Busters Mouse Guide for complete information.

Nvidia Control Panel V-SYNC vs. In-game V-SYNC

While NVCP V-SYNC has no input lag reduction over in-game V-SYNC, and when used with G-SYNC + FPS limit, it will never engage, some in-game V-SYNC solutions may introduce their own frame buffer or frame pacing behaviors, enable triple buffer V-SYNC automatically (not optimal for the native double buffer of G-SYNC), or simply not function at all, and, thus, NVCP V-SYNC is the safest bet.

There are rare occasions, however, where V-SYNC will only function with the in-game option enabled, so if tearing or other anomalous behavior is observed with NVCP V-SYNC (or visa-versa), each solution should be tried until said behavior is resolved.

Maximum Pre-rendered Frames*: Depends

*As of Nvidia driver version 436.02, “Maximum pre-rendered frames” is now labeled “Low Latency Mode,” with “On” being equivalent to MPRF at “1.”

A somewhat contentious setting with very elusive consistent documentable effects, Nvidia Control Panel’s “Maximum pre-rendered frames” dictates how many frames the CPU can prepare before they are sent to the GPU. At best, setting it to the lowest available value of “1” can reduce input lag by 1 frame (and only in certain scenarios), at worst, depending on the power and configuration of the system, the CPU may not be able to keep up, and more frametime spikes will occur.

The effects of this setting are entirely dependent on the given system and game, and many games already have an equivalent internal value of “1” at default. As such, any input latency tests I could have attempted would have only applied to my system, and only to the test game, which is why I ultimately decided to forgo them. All that I can recommend is to try a value of “1” per game, and if the performance doesn’t appear to be impacted and frametime spikes do not increase in frequency, then either, one, the game already has an internal value of “1,” or, two, the setting has done its job and input lag has decreased; user experimentation is required.

Conclusion

Much like strobing methods such as LightBoost & ULMB permit “1000Hz-like” motion clarity at attainable framerates in the here and now, G-SYNC provides input response that rivals high framerate V-SYNC OFF, with no tearing, and at any framerate within its range.

As for its shortcomings, G-SYNC is only as effective as the system it runs on. If the road is the system, G-SYNC is the suspension; the bumpier the road, the less it can compensate. But if set up properly, and run on a capable system, G-SYNC is the best, most flexible syncing solution available on Nvidia hardware, with no peer (V-SYNC OFF among them) in the sheer consistency of its frame delivery.

Feel free to leave a comment below, resume the discussion in the Blur Busters Forums, or continue to the Closing FAQ for further clarifications.



3006 Comments For “G-SYNC 101”

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Sort by:   newest | oldest | most liked
dandyjr
Member
dandyjr

Hey Jorimt, I have a question regarding the issue of avoiding the G-Sync ceiling.

I recently purchased a 280Hz Freesync monitor (it’s not official G-Sync Compatible but after testing in multiple games, it seems to mirror my 144Hz officially G-Sync Compatible monitor in accuracy) and I’ve noticed an issue that has happened on previous monitors I’ve owned as well.

This monitor doesn’t have an OSD that I can have toggled on at all times so I had to manually open the menu to check each time but I’ve noticed that there are multiple moments where the refresh rate will read as 280Hz instead of whatever framerate the game is reading as at the time.

For example, I tried with in-game and external limiters, I can cap the frames at 240fps and the game will read as 240fps but when I open the menu of the monitor, it reads as 280Hz for that moment (causing me to believe that G-Sync has disabled in that moment and Vsync has toggled on). Then I’ll close the menu and reopen it and then the refresh rate will read as some variation under the 280Hz ceiling. That lets me know that G-Sync does engage, but there are moments where it’s not engaging even when it should.

I tested this in multiple games with multiple forms of framerate caps and noticed the same trend. The closer I capped to 280Hz, the more times I would see 280Hz in the monitor. The only way to stop it from happening was to cap the framerate far below the ceiling. Capping at 277fps, for example, in RTSS caused the 280Hz readout to never change at all (which would indicate that G-Sync was not engaging) which caused me a lot of frustration.

I would think that it’s possibly due to the monitor not being offically G-Sync Compatible but the same issue would happen with my 144Hz monitor as well (with lower framerates of course because the ceiling is lower) and that monitor had an OSD that I could leave toggled on. I would see the numbers rapidly change and by watching very closely, you could see the 144Hz flash multiple times within the mixture.

Am I overthinking this or are the monitors actually reading correctly and G-Sync is disengaging and re-engaging constantly even with framerate caps below the ceiling?

It’s sad to think that the 280Hz ceiling is useless because framerates need to be capped far below the ceiling even with external limiters that appear to be perfect in execution.

TkoSeven
Member
TkoSeven

Thanks for the wonderful article.

2 questions!

Adjust desktop size and position section,
“Perform scaling on: Display or GPU” (also override the scaling mode set by games and programs)
does it matter in terms of how g-sync monitor
interacts with GPU?

2nd question on “Max frame rate” on Nvidia settings,
if a game was designed to be locked at 60fps, like Tekken 8,
Nvidia panel set to 58 fps, does it work by limiting frame data transferred to display even though
the logic of the game (application) actually went through generating data for 60 frames?
or
does it actually limit the game to only generate 58 frames?

thank you in advance.

eeayree
Member
eeayree

Hi jorimt. I myself am from another country and therefore I hope that the translator will do his job correctly. Now I’m playing Metro 2033 and this game can produce from 80 to 120 fps on my system and at the same time the GPU is not working at full capacity. It works within 85 percent. Your tuning guide states that it is best to enable low latency mode in cases where the frame rate does not always reach or exceed the refresh rate. Am I doing the right thing if I leave low latency mode on if the video card is not loading at 99%? And at what percentage values ​​does the delay appear exclusively at 99%? On 95, 96, 97 will everything work with minimal delays?

SovonHalder
Member
SovonHalder

HI jorimt, I can’t thank you enough for writing this article. I read pages 1 through 15 multiple times to understand as much as I cound and i’t’s incredibly useful for folks like me who are new to PC gaming. Just wanted to acknowledge that adn say many thanks brother.

So I set up things for my 144hz 32GR93U exactly as you described: In nvcp Gsync+Vsync+Low latency ultra and the in game Vsync, double or triple buffering off and fullscreen on. I have 2 questions basically.

1. In most games I’ve tried so far like alan wake 2, god of war, stray the fps is capped automatically to 138 as it should but in red dead online (vulkan) it maxes out at 144. I use rtss to set it custom 138 but the question remains. Why doesn’t it happen automatically?

2. The new nvidia app reports an Average PC Latency in their overlay. For me above 60ms with mouse and controller feels sluggish whereas when it’s below 30ms the game feels much more responsive. I want to implement that on my RTSS stat overlay. (I find rtss overlay more robust and feature rich and I can see frametime grap and nvidia overlay is finicky and slow.) Could you share some insight as to how they are calculating that number?

Ezi
Member
Ezi

I have a question, so i did the settings you suggested and my gpu usage went from 99% usage to hovering around 70-88ish. Is this normal? Cause if i were to default everything back, the usage would go back to 99%

these are the settings i have in NCP:
– vsync on in NCP, off ingame
– set fps limiter -3
– gsync enabled – full screen
– LLM set to ultra since ingame doesnt have a limiter

my pc spec is:
– 4080 super FE
– 7800x3D
– M32U 4k 144hz monitor

wpDiscuz