G-SYNC 101: Range


Blur Buster's G-SYNC 101: Range Chart

Exceeds G-SYNC Range

G-SYNC + V-SYNC “Off”:
G-SYNC disengages, tearing begins display wide, no frame delay is added.

G-SYNC + V-SYNC “On”:
G-SYNC reverts to V-SYNC behavior when it can no longer adjust the refresh rate to the framerate, 2-6 frames (typically 2 frames; approximately an additional 33.2ms @60 Hz, 20ms @100 Hz, 13.8ms @144 Hz, etc) of delay is added as rendered frames begin to over-queue in both buffers, ultimately delaying their appearance on-screen.

G-SYNC + Fast Sync*:
G-SYNC disengages, Fast Sync engages, 0-1 frame of delay is added**.
*Fast Sync is best used with framerates in excess of 2x to 3x that of the display’s maximum refresh rate, as its third buffer selects from the “best” frame to display as the final render; the higher the sample rate, the better it functions. Do note, even at its most optimal, Fast Sync introduces uneven frame pacing, which can manifest as recurring microstutter.
**Refresh rate/framerate ratio dependent (see G-SYNC 101: G-SYNC vs. Fast Sync).

Within G-SYNC Range

Refer to “Upper & Lower Frametime Variances” section below…

Upper & Lower Frametime Variances

G-SYNC + V-SYNC “Off”:
The tearing inside the G-SYNC range with V-SYNC “Off” is caused by sudden frametime variances output by the system, which will vary in severity and frequency depending on both the efficiency of the given game engine, and the system’s ability (or inability) to deliver consistent frametimes.

G-SYNC + V-SYNC “Off” disables the G-SYNC module’s ability to compensate for sudden frametime variances, meaning, instead of aligning the next frame scan to the next scanout (the process that physically draws each frame, pixel by pixel, left to right, top to bottom on-screen), G-SYNC + V-SYNC “Off” will opt to start the next frame scan in the current scanout instead. This results in simultaneous delivery of more than one frame in a single scanout (tearing).

In the Upper FPS range, tearing will be limited to the bottom of the display. In the Lower FPS range (<36) where frametime spikes can occur (see What are Frametime Spikes?), full tearing will begin.

Without frametime compensation, G-SYNC functionality with V-SYNC “Off” is effectively “Adaptive G-SYNC,” and should be avoided for a tear-free experience (see G-SYNC 101: Optimal Settings & Conclusion).

G-SYNC + V-SYNC “On”:
This is how G-SYNC was originally intended to function. Unlike G-SYNC + V-SYNC “Off,” G-SYNC + V-SYNC “On” allows the G-SYNC module to compensate for sudden frametime variances by adhering to the scanout, which ensures the affected frame scan will complete in the current scanout before the next frame scan and scanout begin. This eliminates tearing within the G-SYNC range, in spite of the frametime variances encountered.

Frametime compensation with V-SYNC “On” is performed during the vertical blanking interval (the span between the previous and next frame scan), and, as such, does not delay single frame delivery within the G-SYNC range and is recommended for a tear-free experience (see G-SYNC 101: Optimal Settings & Conclusion).

G-SYNC + Fast Sync:
Upper FPS range: Fast Sync may engage, 1/2 to 1 frame of delay is added.
Lower FPS range: see “V-SYNC ‘On'” above.

What are Frametime Spikes?

Frametime spikes are an abrupt interruption of frames output by the system, and on a capable setup running an efficient game engine, typically occur due to loading screens, background asset streaming, and the triggering of a script or physics system, but can also be exacerbated by an incapable setup, inefficient game engine, low RAM/VRAM and pagefile over usage, misconfigured (or limited support for) SLI setups, bad drivers, background programs, compatibility issues, or a combination of them all.

Not to be confused with other performance issues, like framerate slowdown or V-SYNC-induced stutter, frametime spikes manifest as the occasional hitch or pause, and usually last for mere micro to milliseconds at a time (seconds, in the worst of cases), plummeting the framerate into the single digits, and concurrently raising the frametime upwards of 1000ms before re-normalizing.

G-SYNC eliminates traditional V-SYNC stutter caused below the maximum refresh rate by repeated frames from delayed frame delivery, but frametime spikes still affect G-SYNC, since it can only mirror what the system is outputting. As such, when G-SYNC has nothing to sync to, it must wait until the system resumes frame output, which results in the visible interruption observed as stutter.

The more efficient the game engine, and the more capable the system running it, the less frametime spikes there are (and the shorter they last), but no setup can fully avoid their occurrence.

Minimum Refresh Range

Once the framerate reaches the approximate 36 and below mark, the G-SYNC module begins inserting duplicate refreshes per frame to maintain the panel’s minimum physical refresh rate, keep the display active, and smooth motion perception. If the framerate is at 36, the refresh rate will double to 72 Hz, at 18 frames, it will triple to 54 Hz, and so on. This behavior will continue down to 1 frame per second.

Regardless of the reported framerate and variable refresh rate of the display, the scanout speed will always be a match to the display’s current maximum refresh rate; 16.6ms @60Hz, 10ms @100 Hz, 6.9ms @144 Hz, and so on. G-SYNC’s ability to detach framerate and refresh rate from the scanout speed can have benefits such as faster frame delivery and reduced input lag on high refresh rate displays at lower fixed framerates (see G-SYNC 101: Hidden Benefits of High Refresh Rate G-SYNC).



46 Comments For “G-SYNC 101”

Sort by:   newest | oldest | most liked
pervyjutsu
Member
pervyjutsu

Should “Reduce Buffering” option in Overwatch be enabled or disabled? Many competitive/pro players suggest having reduce buffering on to get higher framerate and reduced input lag but would having this option on have a negative effect on G-SYNC?

Also I recently upgraded my system to a i7-8700k and 1080ti. I usually sit at a steady 300fps on Overwatch now and use a 240hz monitor (Asus PG258Q). Would G-SYNC be worth using in this case?

vityapapa
Member
vityapapa

The Csgo input-lagg is the best g-sync off+v-sync off and fps_max 0?
i have 144hz monitor.

bcbuse
Member
bcbuse

First, this is the best Gsync/Vsync information on the internet. I appreciate the effort you put into this, well done.

I read a comment you posted somewhere that ‘technically’ the absolute least input lag would be with Gsync Off + Vsync Off + Framerate upcapped(getting at least 2x the monitor refresh rate). Can you approximate how much less input lag that would be versus Gsync On + Vsync On(NVCP) + Framerate capped 2 below monitor refresh rate?

vityapapa
Member
vityapapa

Hi,
on the 9th pages of the CSGo test, V-sync off+288fps limit
the G-sync was turn on or turn off?
thnx

Epicbeardman
Member
Epicbeardman
Thanks for this excellent guide. I now know that the most optimal configuration for my 60hz G-Sync monitor is G-Sync ON + V-Sync ON (NVCP) + V-Sync OFF (in-game) + 57 FPS limit. However, there are some games which utilize V-Sync but don’t provide an option to disable it, either in-game or via an external config file. As stated in section 14 of the guide: “…some in-game V-SYNC solutions may introduce their own frame buffer or frame pacing behaviors, enable triple buffer V-SYNC automatically (not optimal for the native double buffer of G-SYNC)…” In this scenario, should I still use… Read more »
wpDiscuz