G-SYNC 101: Control Panel


G-SYNC Module

The G-SYNC module is a small chip that replaces the display’s standard internal scaler, and contains enough onboard memory to hold and process a single frame at a time.

The module exploits the vertical blanking interval (the span between the previous and next frame scan) to manipulate the display’s internal timings; performing G2G (gray to gray) overdrive calculations to prevent ghosting, and synchronizing the display’s refresh rate to the GPU’s render rate to eliminate tearing, along with the delayed frame delivery and adjoining stutter caused by traditional syncing methods.

G-SYNC Demo

The below Blur Busters Test UFO motion test pattern uses motion interpolation techniques to simulate the seamless framerate transitions G-SYNC provides within the refresh rate, when directly compared to standalone V-SYNC.

G-SYNC Activation

“Enable for full screen mode” (exclusive fullscreen functionality only) will automatically engage when a supported display is connected to the GPU. If G-SYNC behavior is suspect or non-functioning, untick the “Enable G-SYNC, G-SYNC Compatible” box, apply, re-tick, and apply.

Blur Buster's G-SYNC 101: Control Panel

G-SYNC Windowed Mode

“Enable for windowed and full screen mode” allows G-SYNC support for windowed and borderless windowed mode. This option was introduced in a 2015 driver update, and by manipulating the DWM (Desktop Windows Manager) framebuffer, enables G-SYNC’s VRR (variable refresh rate) to synchronize to the focused window’s render rate; unfocused windows remain at the desktop’s fixed refresh rate until focused on.

G-SYNC only functions on one window at a time, and thus any unfocused window that contains moving content will appear to stutter or slow down, a reason why a variety of non-gaming applications (popular web browsers among them) include predefined Nvidia profiles that disable G-SYNC support.

Note: this setting may require a game or system restart after application; the “G-SYNC Indicator” (Nvidia Control Panel > Display > G-SYNC Indicator) can be enabled to verify it is working as intended.

G-SYNC Preferred Refresh Rate

“Highest available” automatically engages when G-SYNC is enabled, and overrides the in-game refresh rate selector (if present), defaulting to the highest supported refresh rate of the display. This is useful for games that don’t include a selector, and ensures the display’s native refresh rate is utilized.

“Application-controlled” adheres to the desktop’s current refresh rate, or defers control to games that contain a refresh rate selector.

Note: this setting only applies to games being run in exclusive fullscreen mode. For games being run in borderless or windowed mode, the desktop dictates the refresh rate.

G-SYNC & V-SYNC

G-SYNC (GPU Synchronization) works on the same principle as double buffer V-SYNC; buffer A begins to render frame A, and upon completion, scans it to the display. Meanwhile, as buffer A finishes scanning its first frame, buffer B begins to render frame B, and upon completion, scans it to the display, repeat.

The primary difference between G-SYNC and V-SYNC is the method in which rendered frames are synchronized. With V-SYNC, the GPU’s render rate is synchronized to the fixed refresh rate of the display. With G-SYNC, the display’s VRR (variable refresh rate) is synchronized to the GPU’s render rate.

Upon its release, G-SYNC’s ability to fall back on fixed refresh rate V-SYNC behavior when exceeding the maximum refresh rate of the display was built-in and non-optional. A 2015 driver update later exposed the option.

This update led to recurring confusion, creating a misconception that G-SYNC and V-SYNC are entirely separate options. However, with G-SYNC enabled, the “Vertical sync” option in the control panel no longer acts as V-SYNC, and actually dictates whether, one, the G-SYNC module compensates for frametime variances output by the system (which prevents tearing at all times. G-SYNC + V-SYNC “Off” disables this behavior; see G-SYNC 101: Range), and two, whether G-SYNC falls back on fixed refresh rate V-SYNC behavior; if V-SYNC is “On,” G-SYNC will revert to V-SYNC behavior above its range, if V-SYNC is “Off,” G-SYNC will disable above its range, and tearing will begin display wide.

Within its range, G-SYNC is the only syncing method active, no matter the V-SYNC “On” or “Off” setting.

Currently, when G-SYNC is enabled, the control panel’s “Vertical sync” entry is automatically engaged to “Use the 3D application setting,” which defers V-SYNC fallback behavior and frametime compensation control to the in-game V-SYNC option. This can be manually overridden by changing the “Vertical sync” entry in the control panel to “Off,” “On,” or “Fast.”



3062 Comments For “G-SYNC 101”

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Sort by:   newest | oldest | most liked
MrFrankTheRabbit
Member
MrFrankTheRabbit

Using RTSS Frame limiter with Freesync causes constant flickering. Monitors range is 48-100, it doesn’t matter if I cap the fps to 60, 70, 80, I still flickers
(BAD flickering, not normal syncing flickering). When Using AMD FRTC or Nvidia profile inspector it stops but frame times are fluctuating too much which causes intermittent flickering. funnily enough I remember using RTSS with freesync a few months ago and there was no flickering, so I’ve tried a few older versions of RTSS. Some have slightly less but it’s still there. Maybe windows update had caused this issue, I don’t know. Do you experience this issue with freesync or g-sync + RTSS?

gen36
Member
gen36

Hi, I have a question about limiting frame rate at (refresh rate – 3).

My understanding is that if FPS > refresh rate, GSYNC defaults to VSYNC behavior (if VSYNC is enabled in Nvidia CP), which can result in additional input lag.

But I have some confusion on this. Example scenario:

– 144 Hz monitor.
– I’m playing an undemanding game, VSYNC OFF, and get 200 FPS.
– I turn on GSYNC + VSYNC, and get 144 FPS.
– With GSYNC + VSYNC on, is it defaulting to VSYNC ON behavior? Frame rate is not exceeding refresh rate but *would have* if vsync was off.

(My confusion is coming from the section in the FAQ saying if your frame rate exceeds refresh rate, to cap at a value lower than refresh rate, but if vsync is on, FPS doesn’t exceed refresh rate anyway)

Silver3
Member
Silver3

I was wondering if you could explain me a very persistent Frametime-Spiking-relating issue I’ve got recently with the console-emulator Cemu that I am tearing my hair out about at this time.

[… original comment modified here for length; view below comment reply for pertinent details w/follow-up…]

Sorry btw for that wall of text, but I am quite at my wit’s end by now on my way comprehending other/similar builds’ success although they probably don’t care half of that, pc-related, the way I do and I seemingly checked all of your mentioned points possibly causing frametime-spikes
and will continue with the hardware-part tomorrow.
If you have any suggestion that merely could hint in a direction I overlooked, PLEASE let me know.

Thank you for reading.

Skwuruhl
Member
Skwuruhl

On the topic of FPS limiters: Two tests have been done somewhat recently that found that RTSS provides more consistent frame times than in-game limiters do (at the expense of 1 frame of input lag)
https://youtu.be/xsXFUVYPIx4
https://www.reddit.com/r/Competitiveoverwatch/comments/9vcxz5/rtss_vs_ingame_fps_cap_or_frame_limit/
What’s your take on these?

rpate124
Member
rpate124

What value should the frame time limit be set to in rtss?

wpDiscuz